The marine sector is constantly searching for innovative solutions to control and reduce noise and vibrations. Ships are a source of many types of acoustic disturbance, mainly generated by propulsion systems and onboard machinery. These elements create discomfort and radiate energy in the surrounding environment. Underwater radiated noise, in particular, is receiving increasing attention from the scientific and international communities due to its harmful effects on marine ecosystems, disrupting the essential life functions of ocean living animals. Acoustic metamaterials are an emerging technology in the field of noise and vibration control. Over the past two decades, researchers have explored their ability to prevent noise propagation and enhance structure damping performance. A specific class of metamaterials, the Acoustic Black Holes (ABH), exhibited high potential in reducing structural vibrations. This ability makes them perfect candidates for intercepting energy transmission from the ship’s hull to the water. No practical marine applications were found in the scientific literature at the beginning of the Ph.D. research. ABH’s development stage was limited to analytical and numerical analysis and to tests performed in a laboratory environment on small-size samples, with an estimated Technology Readiness Level (TRL) of 3 to 4. The Ph.D. project’s primary objective was to advance ABH to a stage of TRL 5 to 6, paving the way for integration onboard ships. This objective was achieved by combining numerical simulations and experimental activity. The experimental phase was organized in a three-step strategy designed to evaluate the ABH effect on structures, from a plate to a stiffened panel to a ship-size structure. The ABH proved a valid alternative to current passive vibro-acoustics solutions, showing especially great damping performance when selecting specific frequencies or narrowed frequency intervals. Moreover, the research demonstrated the ABH’s ability to interact with low-frequency vibrations, possibly filling a gap in the present noise and vibration control technology state of the art.

Il settore navale `e alla costante ricerca di soluzioni innovative riguardanti il controllo del rumore e delle vibrazioni a bordo. Le navi rappresentano una sorgente capace di generare diverse tipologie di disturbi, principalmente dovuti ai sistemi di propulsione e ai macchinari presenti a bordo. L’effetto ottenuto `e quello di ridurre il comfort e contribuire alla radiazione di energia negll’ambiente circostante. Il rumore irradiato in acqua, in particolare, sta ricevendo sempre maggiore attenzione dalla comunit`a scientifica e dalla societ`a nel suo complesso a causa degli effetti dannosi che produce sugli ecosistemi marini, interferendo con le funzioni vitali degli animali che abitano gli oceani. I metamateriali acustici sono una tecnologia che sta emergendo nel settore del rumore e vibrazioni. Negli ultimi vent’anni, i ricercatori hanno studiato le propriet`a che tali materiali hanno nel prevenire la trasmissione di rumore e nell’aumentare lo smorzamento nelle strutture. Esiste una classe specifica di metamateriali, gli Acoustic Black Hole (ABH), che mostra una particolare predisposizione nella riduzione delle vibrazioni strutturali. Questo li rende perfetti candidati per agire sulla trasmissione dell’energia dallo scafo verso l’acqua. All’inizio del percorso di dottorato, si `e riscontrato che la letteratura scientifica non riportava studi di applicazione pratiche sull’argomento e lo sviluppo degli ABH era limitato a approfondimenti analitici e numerici e a test effettuati in ambiente di laboratorio su manufatti di piccola taglia. Il Technology Readiness Level (TRL) stimato era di 3 o 4. Il principale obiettivo del dottorato `e stato l’avanzamento del TRL degli ABH ad uno stadio di 5 o 6, aprendo la strada ad una loro futura integrazione a bordo delle navi. Tale obiettivo `e stato raggiunto combinando simulazioni numeriche e attivit`a sperimentale. Quest’ultima `e stata ideata come una strategia a tre step, progettata per valutare l’effetto degli ABH su diverse strutture, partendo da una piastra, passando per un pannello nervato e arrivando ad un simulacro di struttura navale. Gli ABH si sono rivelati una valida alternativa alle tecnologie passive di riduzione vibroacustica attualmente utilizzate, mostrando ottime performance di smorzamento specialmente quando il target selezionato `e una specifica frequenza o un ristretto intevallo di frequenze. Inoltre, la ricerca ha mostrato la capacit`a degli ABH di interagire con le vibrazioni a bassa frequenza, permettendo cos`ı di colmare un gap nell’attuale panorama riguardante le tecnologie per la riduzione del rumore e delle vibrazioni.

Improving Ship-Acoustic Footprint through Acoustic Black Hole Metastructure Hull / Rognoni, Giovanni. - (2025 Mar 28).

Improving Ship-Acoustic Footprint through Acoustic Black Hole Metastructure Hull

ROGNONI, GIOVANNI
2025-03-28

Abstract

The marine sector is constantly searching for innovative solutions to control and reduce noise and vibrations. Ships are a source of many types of acoustic disturbance, mainly generated by propulsion systems and onboard machinery. These elements create discomfort and radiate energy in the surrounding environment. Underwater radiated noise, in particular, is receiving increasing attention from the scientific and international communities due to its harmful effects on marine ecosystems, disrupting the essential life functions of ocean living animals. Acoustic metamaterials are an emerging technology in the field of noise and vibration control. Over the past two decades, researchers have explored their ability to prevent noise propagation and enhance structure damping performance. A specific class of metamaterials, the Acoustic Black Holes (ABH), exhibited high potential in reducing structural vibrations. This ability makes them perfect candidates for intercepting energy transmission from the ship’s hull to the water. No practical marine applications were found in the scientific literature at the beginning of the Ph.D. research. ABH’s development stage was limited to analytical and numerical analysis and to tests performed in a laboratory environment on small-size samples, with an estimated Technology Readiness Level (TRL) of 3 to 4. The Ph.D. project’s primary objective was to advance ABH to a stage of TRL 5 to 6, paving the way for integration onboard ships. This objective was achieved by combining numerical simulations and experimental activity. The experimental phase was organized in a three-step strategy designed to evaluate the ABH effect on structures, from a plate to a stiffened panel to a ship-size structure. The ABH proved a valid alternative to current passive vibro-acoustics solutions, showing especially great damping performance when selecting specific frequencies or narrowed frequency intervals. Moreover, the research demonstrated the ABH’s ability to interact with low-frequency vibrations, possibly filling a gap in the present noise and vibration control technology state of the art.
28-mar-2025
BIOT, MARCO
37
2023/2024
Settore IIND-01/B - Costruzioni e impianti navali
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_pdfA.pdf

embargo fino al 28/03/2026

Descrizione: Tesi definitiva dottorato
Tipologia: Tesi di dottorato
Dimensione 8.26 MB
Formato Adobe PDF
8.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3107362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact