We prove in dimension (Formula presented.) a result similar to a classical paper by Soffer and Weinstein, Jour. Diff. Eq. 98 (1992), improving it by encompassing for pure power nonlinearities the whole range of exponents (Formula presented.). The proof is based on the virial inequality of Kowalczyk et al., J. Eur. Math. Soc. (JEMS) 24 (2022), with smoothing estimates as shown in Mizumachi J. Math. Kyoto Univ. 48 (2008).
On Small Energy Solutions of the Nonlinear Schrödinger Equation in 1D with a Generic Trapping Potential with a Single Eigenvalue
Cuccagna, Scipio
Primo
;Maeda, MasayaUltimo
2024-01-01
Abstract
We prove in dimension (Formula presented.) a result similar to a classical paper by Soffer and Weinstein, Jour. Diff. Eq. 98 (1992), improving it by encompassing for pure power nonlinearities the whole range of exponents (Formula presented.). The proof is based on the virial inequality of Kowalczyk et al., J. Eur. Math. Soc. (JEMS) 24 (2022), with smoothing estimates as shown in Mizumachi J. Math. Kyoto Univ. 48 (2008).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mathematics-12-03876.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
303.97 kB
Formato
Adobe PDF
|
303.97 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.