We prove in dimension (Formula presented.) a result similar to a classical paper by Soffer and Weinstein, Jour. Diff. Eq. 98 (1992), improving it by encompassing for pure power nonlinearities the whole range of exponents (Formula presented.). The proof is based on the virial inequality of Kowalczyk et al., J. Eur. Math. Soc. (JEMS) 24 (2022), with smoothing estimates as shown in Mizumachi J. Math. Kyoto Univ. 48 (2008).

On Small Energy Solutions of the Nonlinear Schrödinger Equation in 1D with a Generic Trapping Potential with a Single Eigenvalue

Cuccagna, Scipio
Primo
;
Maeda, Masaya
Ultimo
2024-01-01

Abstract

We prove in dimension (Formula presented.) a result similar to a classical paper by Soffer and Weinstein, Jour. Diff. Eq. 98 (1992), improving it by encompassing for pure power nonlinearities the whole range of exponents (Formula presented.). The proof is based on the virial inequality of Kowalczyk et al., J. Eur. Math. Soc. (JEMS) 24 (2022), with smoothing estimates as shown in Mizumachi J. Math. Kyoto Univ. 48 (2008).
File in questo prodotto:
File Dimensione Formato  
mathematics-12-03876.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 303.97 kB
Formato Adobe PDF
303.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3108978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact