Mussels exhibit a sophisticated innate immune response characterized by many highly variable molecules responsible for recognizing and killing potential pathogenic microorganisms. The complexity of this molecular arsenal is marked by the occurrence of gene presence-absence (PAV), a phenomenon that targets numerous expanded lineage-specific gene families. This phenomenon enhances inter-individual sequence variability, further enriching the diversity of the repertoire of molecules involved in the immune response. Until now, the origin of mussel dispensable genes, which, unlike core genes, are not shared by all individuals, has remained elusive. In this study, by analyzing the resequenced genomes of more than 160 individuals in four distinct species of the Mytilus complex, we characterize the repertoire of mytilin genes encoding hemocyte-specific antimicrobial peptides (AMPs). We define a canonical gene architecture comprising four protein-coding genes and two pseudogenes in most haplotypes. However, the organization of the locus displays a marked intra-specific diversity due to the presence of variable alleles, the frequent pseudogenization of mytilin G1 and structural variants associated with additional dispensable mytilin genes, which often retain features that support functional preservation. Molecular phylogeny supports an ancient origin for dispensable mytilin genes, predating the radiation of modern Mytilus species. This suggests that most widespread extant haplotypes derive from a larger and more complex ancestral mytilin gene cluster and that dispensable mytilin genes are vestigial AMPs that have been retained only in a few populations where their presence may have contributed to fitness advantages and local adaptation.
The mytilin gene cluster: Shedding light on the enigmatic origin of mussel dispensable genes
Gerdol, Marco
Primo
;Greco, Samuele;Kireta, Dona;Edomi, Paolo;Pallavicini, AlbertoUltimo
2025-01-01
Abstract
Mussels exhibit a sophisticated innate immune response characterized by many highly variable molecules responsible for recognizing and killing potential pathogenic microorganisms. The complexity of this molecular arsenal is marked by the occurrence of gene presence-absence (PAV), a phenomenon that targets numerous expanded lineage-specific gene families. This phenomenon enhances inter-individual sequence variability, further enriching the diversity of the repertoire of molecules involved in the immune response. Until now, the origin of mussel dispensable genes, which, unlike core genes, are not shared by all individuals, has remained elusive. In this study, by analyzing the resequenced genomes of more than 160 individuals in four distinct species of the Mytilus complex, we characterize the repertoire of mytilin genes encoding hemocyte-specific antimicrobial peptides (AMPs). We define a canonical gene architecture comprising four protein-coding genes and two pseudogenes in most haplotypes. However, the organization of the locus displays a marked intra-specific diversity due to the presence of variable alleles, the frequent pseudogenization of mytilin G1 and structural variants associated with additional dispensable mytilin genes, which often retain features that support functional preservation. Molecular phylogeny supports an ancient origin for dispensable mytilin genes, predating the radiation of modern Mytilus species. This suggests that most widespread extant haplotypes derive from a larger and more complex ancestral mytilin gene cluster and that dispensable mytilin genes are vestigial AMPs that have been retained only in a few populations where their presence may have contributed to fitness advantages and local adaptation.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S1050464825001755-main.pdf
accesso aperto
Descrizione: Materiale supplementare disponibile sul sito dell'editore
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
8.87 MB
Formato
Adobe PDF
|
8.87 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


