In masonry buildings, ring beams are crucial structural components for preventing out-of-plane failure of walls and fostering global seismic responses. The traditional approach of building reinforced concrete ring beams in existing structures is very invasive, which has motivated present research into new ways of constructing using modern fibre-based composite materials. Two solutions are tested by quasi-static, horizontal bending cyclic tests on full-scale, solid brick and rubble stone masonry. The first solution consists of horizontal Carbon Fibre–Reinforced Polymer (CFRP) strips externally bonded on the outer masonry surface, while the second comprises embedded Glass Fibre-Reinforced Polymer (GFRP) meshes in the masonry bed joints. Simplified analytical models are applied to estimate the strength. Although CFRP strips are applied eccentrically, they proved effective for loads in both directions (the fibres fractured in tension) because of the continuity of the reinforcement throughout orthogonal walls. The ring beams with GFRP-reinforced bed joints responded very well, as evidenced by tensile fracture of fibres. In both cases, bending resistance was significantly improved. However, tests also showed the importance of certain details to avoid stress concentrations in the fibres (e.g. rounded masonry corners) and bed joint slippage (e.g. full embedment of the GFRP meshes with the mortar).

Fibre-based composite materials for the seismic strengthening of masonry ring beams: cyclic tests on full-scale samples

Boem, Ingrid
Primo
;
Gattesco, Natalino
Secondo
;
Rizzi, Emanuele
Penultimo
;
Dudine, Allen
Ultimo
;
2025-01-01

Abstract

In masonry buildings, ring beams are crucial structural components for preventing out-of-plane failure of walls and fostering global seismic responses. The traditional approach of building reinforced concrete ring beams in existing structures is very invasive, which has motivated present research into new ways of constructing using modern fibre-based composite materials. Two solutions are tested by quasi-static, horizontal bending cyclic tests on full-scale, solid brick and rubble stone masonry. The first solution consists of horizontal Carbon Fibre–Reinforced Polymer (CFRP) strips externally bonded on the outer masonry surface, while the second comprises embedded Glass Fibre-Reinforced Polymer (GFRP) meshes in the masonry bed joints. Simplified analytical models are applied to estimate the strength. Although CFRP strips are applied eccentrically, they proved effective for loads in both directions (the fibres fractured in tension) because of the continuity of the reinforcement throughout orthogonal walls. The ring beams with GFRP-reinforced bed joints responded very well, as evidenced by tensile fracture of fibres. In both cases, bending resistance was significantly improved. However, tests also showed the importance of certain details to avoid stress concentrations in the fibres (e.g. rounded masonry corners) and bed joint slippage (e.g. full embedment of the GFRP meshes with the mortar).
2025
25-mar-2025
Pubblicato
File in questo prodotto:
File Dimensione Formato  
s11527-025-02617-w.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3113846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact