We deal with Calderón's problem in a layered anisotropic medium Ω, ⊂ Rnn ≥ 3, with complex anisotropic admittivity σ =γA, where A is a known Lipschitz matrix-valued function. We assume that the layers of Ω are fixed and known and that γ is an unknown affine complex-valued function on each layer. We provide Hölder and Lipschitz stability estimates of σ in terms of an ad hoc misfit functional as well as the more classical Dirichlet to Neumann map localized on some open portion ∑ of ∂ Ω, respectively.

The Local Complex Calderón Problem: Stability in a Layered Medium for a Special Type of Anisotropic Admittivity

Sonia Foschiatti;Romina Gaburro
;
Eva Sincich
Ultimo
2025-01-01

Abstract

We deal with Calderón's problem in a layered anisotropic medium Ω, ⊂ Rnn ≥ 3, with complex anisotropic admittivity σ =γA, where A is a known Lipschitz matrix-valued function. We assume that the layers of Ω are fixed and known and that γ is an unknown affine complex-valued function on each layer. We provide Hölder and Lipschitz stability estimates of σ in terms of an ad hoc misfit functional as well as the more classical Dirichlet to Neumann map localized on some open portion ∑ of ∂ Ω, respectively.
File in questo prodotto:
File Dimensione Formato  
2025_FGS_SIMA.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 475.71 kB
Formato Adobe PDF
475.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3114638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact