We address the issue of specifying a spatial lag vs. spatial error process in spatial panel models. The popular locally robust Lagrange multiplier (RLM) tests for spatial lag vs. error are compared to optimal alternatives based on maximum likelihood estimation: Wald and likelihood ratio (LR) tests requiring estimation of the full encompassing model, and conditional Lagrange multiplier (CLM) tests drawing on the reduced specification. Monte Carlo simulations are performed in a typical spatial panel context. Individual effects are successfully eliminated through the forward orthogonal deviations transformation, making the RLM suitable for panel data. Nevertheless, the statistical properties of Wald and LR are superior to those of the RLM. The CLM also dominates the RLM, as long as the sample is at least of moderate size. The RLM are computationally very convenient, but ML-based tests are feasible in most usage cases on mainstream hardware.

Specifying spatial effects in panel data: Locally robust vs. conditional tests

Millo, Giovanni
2025-01-01

Abstract

We address the issue of specifying a spatial lag vs. spatial error process in spatial panel models. The popular locally robust Lagrange multiplier (RLM) tests for spatial lag vs. error are compared to optimal alternatives based on maximum likelihood estimation: Wald and likelihood ratio (LR) tests requiring estimation of the full encompassing model, and conditional Lagrange multiplier (CLM) tests drawing on the reduced specification. Monte Carlo simulations are performed in a typical spatial panel context. Individual effects are successfully eliminated through the forward orthogonal deviations transformation, making the RLM suitable for panel data. Nevertheless, the statistical properties of Wald and LR are superior to those of the RLM. The CLM also dominates the RLM, as long as the sample is at least of moderate size. The RLM are computationally very convenient, but ML-based tests are feasible in most usage cases on mainstream hardware.
2025
23-set-2025
Pubblicato
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2211675325000569-main.pdf

accesso aperto

Descrizione: Articolo di rivista
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 902.29 kB
Formato Adobe PDF
902.29 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3117539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact