Building energy management is crucial in reducing energy consumption and maintaining occupant comfort, especially in heating systems. However, achieving optimal space heating efficiency while maintaining consistent comfort presents significant challenges. Traditional methods often fail to balance energy consumption with thermal comfort, especially across multiple zones in buildings with varying operational demands. This study investigates the role of deep learning models in optimizing space heating while maintaining thermal comfort across multiple building zones. It aims to enhance heating efficiency by developing predictive models for building temperature and heating consumption, evaluating the effectiveness of different deep learning architectures, and analyzing the impact of model-driven heating optimization on energy savings and occupant comfort. To address this challenge, this study employs Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer models to forecast area temperatures and predict space heating consumption. The proposed methodology leverages historical building temperature data, weather station measurements such as atmospheric pressure, wind speed, wind direction, relative humidity, and solar radiation, along with other weather parameters, to develop accurate and reliable predictions. A two-stage deep learning process is utilized: first, temperature predictions are generated for different building zones, and second, these predictions are used to estimate global heating consumption. This study also employs grid search and cross-validation to optimize the model configurations and custom loss functions to ensure energy efficiency and occupant comfort. Results demonstrate that the Long Short-Term Memory and Transformer models outperform the Gated Recurrent Unit regarding heating reduction, with a 20.95% and 20.69% decrease, respectively, compared to actual consumption. This study contributes significantly to energy management by providing a deep learning-driven framework that enhances energy efficiency while maintaining thermal comfort across different building areas, thereby supporting sustainable and intelligent building operations.
Optimizing Space Heating in Buildings: A Deep Learning Approach for Energy Efficiency
Castelli, Mauro;Manzoni, Luca
2025-01-01
Abstract
Building energy management is crucial in reducing energy consumption and maintaining occupant comfort, especially in heating systems. However, achieving optimal space heating efficiency while maintaining consistent comfort presents significant challenges. Traditional methods often fail to balance energy consumption with thermal comfort, especially across multiple zones in buildings with varying operational demands. This study investigates the role of deep learning models in optimizing space heating while maintaining thermal comfort across multiple building zones. It aims to enhance heating efficiency by developing predictive models for building temperature and heating consumption, evaluating the effectiveness of different deep learning architectures, and analyzing the impact of model-driven heating optimization on energy savings and occupant comfort. To address this challenge, this study employs Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer models to forecast area temperatures and predict space heating consumption. The proposed methodology leverages historical building temperature data, weather station measurements such as atmospheric pressure, wind speed, wind direction, relative humidity, and solar radiation, along with other weather parameters, to develop accurate and reliable predictions. A two-stage deep learning process is utilized: first, temperature predictions are generated for different building zones, and second, these predictions are used to estimate global heating consumption. This study also employs grid search and cross-validation to optimize the model configurations and custom loss functions to ensure energy efficiency and occupant comfort. Results demonstrate that the Long Short-Term Memory and Transformer models outperform the Gated Recurrent Unit regarding heating reduction, with a 20.95% and 20.69% decrease, respectively, compared to actual consumption. This study contributes significantly to energy management by providing a deep learning-driven framework that enhances energy efficiency while maintaining thermal comfort across different building areas, thereby supporting sustainable and intelligent building operations.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


