Extreme precipitation events are projected to increase both in frequency and intensity due to climate change. High-resolution climate projections are essential to effectively model the convective phenomena responsible for severe precipitation and to plan any adaptation and mitigation action. Existing numerical methods struggle with either insufficient accuracy in capturing the evolution of convective dynamical systems, due to the low resolution, or are limited by the excessive computational demands required to achieve kilometre-scale resolution. To fill this gap, we propose a novel deep learning regional climate model (RCM) emulator called graph neural networks for climate downscaling (GNN4CD) to estimate high-resolution precipitation. The emulator is innovative in architecture and training strategy, using graph neural networks (GNNs) to learn the downscaling function through a novel hybrid imperfect framework. GNN4CD is initially trained to perform reanalysis to observation downscaling and then used for RCM emulation during the inference phase. The emulator is able to estimate precipitation at very high resolution both in space (km) and time (h), starting from lower-resolution atmospheric data (km). Leveraging the flexibility of GNNs, we tested its spatial transferability in regions unseen during training. The model trained on northern Italy effectively reproduces the precipitation distribution, seasonal diurnal cycles, and spatial patterns of extreme percentiles across all of Italy. When used as an RCM emulator for the historical, mid-century, and end-of-century time slices, GNN4CD shows the remarkable ability to capture the shifts in precipitation distribution, especially in the tail, where changes are most pronounced.

Graph neural networks for hourly precipitation projections at the convection permitting scale with a novel hybrid imperfect framework

Blasone V.
Primo
;
Coppola E.
Secondo
;
Di Gioia S.
Penultimo
;
Bortolussi L.
Ultimo
2025-01-01

Abstract

Extreme precipitation events are projected to increase both in frequency and intensity due to climate change. High-resolution climate projections are essential to effectively model the convective phenomena responsible for severe precipitation and to plan any adaptation and mitigation action. Existing numerical methods struggle with either insufficient accuracy in capturing the evolution of convective dynamical systems, due to the low resolution, or are limited by the excessive computational demands required to achieve kilometre-scale resolution. To fill this gap, we propose a novel deep learning regional climate model (RCM) emulator called graph neural networks for climate downscaling (GNN4CD) to estimate high-resolution precipitation. The emulator is innovative in architecture and training strategy, using graph neural networks (GNNs) to learn the downscaling function through a novel hybrid imperfect framework. GNN4CD is initially trained to perform reanalysis to observation downscaling and then used for RCM emulation during the inference phase. The emulator is able to estimate precipitation at very high resolution both in space (km) and time (h), starting from lower-resolution atmospheric data (km). Leveraging the flexibility of GNNs, we tested its spatial transferability in regions unseen during training. The model trained on northern Italy effectively reproduces the precipitation distribution, seasonal diurnal cycles, and spatial patterns of extreme percentiles across all of Italy. When used as an RCM emulator for the historical, mid-century, and end-of-century time slices, GNN4CD shows the remarkable ability to capture the shifts in precipitation distribution, especially in the tail, where changes are most pronounced.
File in questo prodotto:
File Dimensione Formato  
Blasone_et_al_EDS_2025.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 20.02 MB
Formato Adobe PDF
20.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3119405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact