Many early universe scenarios predict an enhancement of scalar perturbations at scales currently unconstrained by cosmological probes. These perturbations source gravitational waves (GWs) at second order in perturbation theory, leading to a scalar-induced gravitational wave (SIGW) background. The LISA detector, sensitive to mHz GWs, will be able to constrain curvature perturbations in a new window corresponding to scales k ∈ [1010, 1014] Mpc-1, difficult to probe otherwise. In this work, we forecast the capabilities of LISA to constrain the source of SIGWs using different approaches: i) agnostic, where the spectrum of curvature perturbations is binned in frequency space; ii) template-based, modeling the curvature power spectrum based on motivated classes of models; iii) ab initio, starting from first-principles model of inflation featuring an ultra-slow roll phase. We compare the strengths and weaknesses of each approach. We also discuss the impact on the SIGW spectrum of non-standard thermal histories affecting the kernels of SIGW emission and non-Gaussianity in the statistics of the curvature perturbations. Finally, we propose simple tests to assess whether the signal is compatible with the SIGW hypothesis. The pipeline used is built into the SIGWAY code.

Reconstructing primordial curvature perturbations via scalar-induced gravitational waves with LISA

Morgante E.;Nardini G.;
2025-01-01

Abstract

Many early universe scenarios predict an enhancement of scalar perturbations at scales currently unconstrained by cosmological probes. These perturbations source gravitational waves (GWs) at second order in perturbation theory, leading to a scalar-induced gravitational wave (SIGW) background. The LISA detector, sensitive to mHz GWs, will be able to constrain curvature perturbations in a new window corresponding to scales k ∈ [1010, 1014] Mpc-1, difficult to probe otherwise. In this work, we forecast the capabilities of LISA to constrain the source of SIGWs using different approaches: i) agnostic, where the spectrum of curvature perturbations is binned in frequency space; ii) template-based, modeling the curvature power spectrum based on motivated classes of models; iii) ab initio, starting from first-principles model of inflation featuring an ultra-slow roll phase. We compare the strengths and weaknesses of each approach. We also discuss the impact on the SIGW spectrum of non-standard thermal histories affecting the kernels of SIGW emission and non-Gaussianity in the statistics of the curvature perturbations. Finally, we propose simple tests to assess whether the signal is compatible with the SIGW hypothesis. The pipeline used is built into the SIGWAY code.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3119481
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact