In the present paper, we consider second order strictly hyperbolic linear operators of the form $Lu\,=\,\d_t^2u\,-\,\div\big(A(t,x)\nabla u\big)$, for $(t,x)\in[0,T]\times{\mathbb R}^n$. We assume the coefficients of the matrix $A(t,x)$ to be smooth in time on $\,]0,T]\times{\mathbb R}^n$, but rapidly oscillating when $t\to0^+$; they match instead minimal regularity assumptions (either Lipschitz or log-Lipschitz regularity conditions) with respect to the space variable. Correspondingly, we prove well-posedness results for the Cauchy problem related to $L$, either with no loss of derivatives (in the Lipschitz case) or with a finite loss of derivatives, which is linearly increasing in time (in the log-Lipschitz case).

Well-posedness results for hyperbolic operators with coefficients oscillating in time

FERRUCCIO COLOMBINI;DANIELE DEL SANTO
;
FRANCESCO FANELLI
2025-01-01

Abstract

In the present paper, we consider second order strictly hyperbolic linear operators of the form $Lu\,=\,\d_t^2u\,-\,\div\big(A(t,x)\nabla u\big)$, for $(t,x)\in[0,T]\times{\mathbb R}^n$. We assume the coefficients of the matrix $A(t,x)$ to be smooth in time on $\,]0,T]\times{\mathbb R}^n$, but rapidly oscillating when $t\to0^+$; they match instead minimal regularity assumptions (either Lipschitz or log-Lipschitz regularity conditions) with respect to the space variable. Correspondingly, we prove well-posedness results for the Cauchy problem related to $L$, either with no loss of derivatives (in the Lipschitz case) or with a finite loss of derivatives, which is linearly increasing in time (in the log-Lipschitz case).
2025
2025
Pubblicato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3120479
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact