We introduce (r + 1)-completed cycles k-leaky Hurwitz numbers and prove piecewise polynomiality as well as establishing their chamber polynomiality structure and their wall crossing formulae. For k = 0 the results recover previous results of Shadrin–Spitz–Zvonkine. The specialization for r = 1 recovers Hurwitz numbers that are close to the ones studied by Cavalieri–Markwig–Ranganathan and Cavalieri– Markwig–Schmitt.

Completed Cycles Leaky Hurwitz Numbers

Davide Accadia
;
Danilo Lewanski
2025-01-01

Abstract

We introduce (r + 1)-completed cycles k-leaky Hurwitz numbers and prove piecewise polynomiality as well as establishing their chamber polynomiality structure and their wall crossing formulae. For k = 0 the results recover previous results of Shadrin–Spitz–Zvonkine. The specialization for r = 1 recovers Hurwitz numbers that are close to the ones studied by Cavalieri–Markwig–Ranganathan and Cavalieri– Markwig–Schmitt.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3121099
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact