We investigate the potential of Multi-Objective, Deep Reinforcement Learning for stock and cryptocurrency single-asset trading: in particular, we consider a Multi-Objective algorithm which generalizes the reward functions and discount factor (i.e., these components are not specified a priori, but incorporated in the learning process). Firstly, using several important assets (BTCUSD, ETHUSDT, XRPUSDT, AAPL, SPY, NIFTY50), we verify the reward generalization property of the proposed Multi-Objective algorithm, and provide preliminary statistical evidence showing increased predictive stability over the corresponding Single-Objective strategy. Secondly, we show that the Multi-Objective algorithm has a clear edge over the corresponding Single-Objective strategy when the reward mechanism is sparse (i.e., when non-null feedback is infrequent over time). Finally, we discuss the generalization properties with respect to the discount factor. The entirety of our code is provided in open-source format.

Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading

Scassola, Davide
Penultimo
;
2024-01-01

Abstract

We investigate the potential of Multi-Objective, Deep Reinforcement Learning for stock and cryptocurrency single-asset trading: in particular, we consider a Multi-Objective algorithm which generalizes the reward functions and discount factor (i.e., these components are not specified a priori, but incorporated in the learning process). Firstly, using several important assets (BTCUSD, ETHUSDT, XRPUSDT, AAPL, SPY, NIFTY50), we verify the reward generalization property of the proposed Multi-Objective algorithm, and provide preliminary statistical evidence showing increased predictive stability over the corresponding Single-Objective strategy. Secondly, we show that the Multi-Objective algorithm has a clear edge over the corresponding Single-Objective strategy when the reward mechanism is sparse (i.e., when non-null feedback is infrequent over time). Finally, we discuss the generalization properties with respect to the discount factor. The entirety of our code is provided in open-source format.
File in questo prodotto:
File Dimensione Formato  
s00521-023-09033-7-1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3121338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact