The pathological loss of nuclear TDP-43 is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to extensive alterations in RNA metabolism and a broad number of neuronal transcripts. However, the key effectors linking TDP-43 dysfunction to synaptic defects remain unclear. In this study, using Drosophila and human iPSC-derived motoneurons, we identify Rab4 as a direct and conserved target of TDP-43, whose expression is necessary and sufficient to recover synaptic vesicle recycling, neuromuscular junction growth, and locomotor function in TDP-43-deficient motoneurons. Moreover, Rab4 activity promotes the presynaptic recruitment of futsch/MAP1B, a microtubule-associated protein also regulated by TDP-43, which autonomously supports synaptic growth and vesicle turnover. Together, these findings define a TDP-43/Rab4/futsch/MAP1B regulatory axis that couples endosomal dynamics to cytoskeletal assembly. Furthermore, this functionally coherent module provides a mechanistic basis for understanding how synaptic vulnerability is amplified in disease and offers a framework to identify key compensatory targets capable of sustaining neuronal function in the absence of TDP-43.
TDP-43 Regulates Rab4 Levels to Support Synaptic Vesicle Recycling and Neuromuscular Connectivity in Drosophila and Human ALS Models
Romano, GiuliaSecondo
;Canarutto, Giulia;
2025-01-01
Abstract
The pathological loss of nuclear TDP-43 is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to extensive alterations in RNA metabolism and a broad number of neuronal transcripts. However, the key effectors linking TDP-43 dysfunction to synaptic defects remain unclear. In this study, using Drosophila and human iPSC-derived motoneurons, we identify Rab4 as a direct and conserved target of TDP-43, whose expression is necessary and sufficient to recover synaptic vesicle recycling, neuromuscular junction growth, and locomotor function in TDP-43-deficient motoneurons. Moreover, Rab4 activity promotes the presynaptic recruitment of futsch/MAP1B, a microtubule-associated protein also regulated by TDP-43, which autonomously supports synaptic growth and vesicle turnover. Together, these findings define a TDP-43/Rab4/futsch/MAP1B regulatory axis that couples endosomal dynamics to cytoskeletal assembly. Furthermore, this functionally coherent module provides a mechanistic basis for understanding how synaptic vulnerability is amplified in disease and offers a framework to identify key compensatory targets capable of sustaining neuronal function in the absence of TDP-43.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025-IJMS-Rab4.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
|
ijms-3922116-supplementary.pdf
accesso aperto
Descrizione: Supplemental Material
Tipologia:
Altro materiale allegato
Licenza:
Digital Rights Management non definito
Dimensione
278.33 kB
Formato
Adobe PDF
|
278.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


