We study changes of variable, called time transformations, which reduce a delay differential equation (DDE) with a variable non-vanishing delay and an unbounded lag function to another DDE with a constant delay. By using this reduction, we can easily obtain a superconvergent integration of the original equation, even in the case of a non-strictly-increasing lag function, and study the type of decay to zero of solutions of scalar linear non-autonomous equations with a strictly increasing lag function.

Time transformation for delay differential equations

MASET, STEFANO
2009-01-01

Abstract

We study changes of variable, called time transformations, which reduce a delay differential equation (DDE) with a variable non-vanishing delay and an unbounded lag function to another DDE with a constant delay. By using this reduction, we can easily obtain a superconvergent integration of the original equation, even in the case of a non-strictly-increasing lag function, and study the type of decay to zero of solutions of scalar linear non-autonomous equations with a strictly increasing lag function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3288
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact