The rapid developments in the availability and access to spatially referenced information in a variety of areas, has induced the need for better analysis techniques to understand the various phenomena. In particular spatial clustering algorithms which groups similar spatial objects into classes can be used for the identification of areas sharing common characteristics. The aim of this paper is to present a density-based algorithm for the discover of clusters in large spatial data set which is a modification of a recently proposed algorithm.This is applied to a real data set related to homogeneous agricultural environments.

A Clustering Method for Large Spatial Databases

SCHOIER, GABRIELLA;BORRUSO, GIUSEPPE
2004-01-01

Abstract

The rapid developments in the availability and access to spatially referenced information in a variety of areas, has induced the need for better analysis techniques to understand the various phenomena. In particular spatial clustering algorithms which groups similar spatial objects into classes can be used for the identification of areas sharing common characteristics. The aim of this paper is to present a density-based algorithm for the discover of clusters in large spatial data set which is a modification of a recently proposed algorithm.This is applied to a real data set related to homogeneous agricultural environments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1690564
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact