Molecular simulation techniques are used to explore and characterize the atomic scale structure, and to predict binding energies and basal spacing of polymer/clay nanocomposites based on polypropylene (PP) and maleated polypropylene (PPMA), montmorillonite (MMT), and different alkylammonium ions (quats) as surfactants. Our evidences suggest that shorter hydrocarbonic chains are more effective in producing favorable binding energies with respect to longer ones, and the substitutions of hydrogen atoms with polar groups on the quaternary ammonium salt (quat) generally results in greater interaction between quat and both polymer and clay. Under the hypothesis, that montmorillonite platelets are uniformly dispersed in a polymer matrix, the modified polypropylene yields higher interfacial strength with clay than neat polypropylene. The use of neat PP and quats with higher molecular volume offer the higher values of the basal spacing and thus, in principle, they should be more effective in the exfoliation process.

Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy

TOTH, RADOVAN;FERRONE, MARCO;FERMEGLIA, MAURIZIO;PRICL, SABRINA;
2004-01-01

Abstract

Molecular simulation techniques are used to explore and characterize the atomic scale structure, and to predict binding energies and basal spacing of polymer/clay nanocomposites based on polypropylene (PP) and maleated polypropylene (PPMA), montmorillonite (MMT), and different alkylammonium ions (quats) as surfactants. Our evidences suggest that shorter hydrocarbonic chains are more effective in producing favorable binding energies with respect to longer ones, and the substitutions of hydrogen atoms with polar groups on the quaternary ammonium salt (quat) generally results in greater interaction between quat and both polymer and clay. Under the hypothesis, that montmorillonite platelets are uniformly dispersed in a polymer matrix, the modified polypropylene yields higher interfacial strength with clay than neat polypropylene. The use of neat PP and quats with higher molecular volume offer the higher values of the basal spacing and thus, in principle, they should be more effective in the exfoliation process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1694076
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 106
social impact