The thermodynamic properties of surface ceria were investigated through equilibrium isotherms determined by flow titration and coulometric titration measurements on high-surface-area ceria and ceria supported on La-modified alumina (LA). While the surface area of pure ceria was found to be unstable under redox conditions, the extent of reduction at 873 K and a P(O2) of 1.6 × 10-26 atm increased with surface area. Because ceria/LA samples were stable, equilibrium isotherms were determined between 873 and 973 K on a 30-wt% ceria sample. Oxidation enthalpies on ceria/LA were found to vary with the extent of reduction, ranging from -500 kJ/mol O2 at low extents of reduction to near the bulk value of -760 kJ/mol O2 at higher extents. To determine whether +3 dopants could affect the oxidation enthalpies for ceria, isotherms were measured for Sm+3-doped ceria (SDC) and Y+3-doped ceria. These dopants were found to remove the phase transition observed in pure ceria below 973 K but appeared to have minimal effect on the oxidation enthalpies. Implications of these results for catalytic applications of ceria are discussed.

Oxidation Enthalpies for Reduction of Ceria Surfaces

MONTINI, TIZIANO;FORNASIERO, Paolo;
2007-01-01

Abstract

The thermodynamic properties of surface ceria were investigated through equilibrium isotherms determined by flow titration and coulometric titration measurements on high-surface-area ceria and ceria supported on La-modified alumina (LA). While the surface area of pure ceria was found to be unstable under redox conditions, the extent of reduction at 873 K and a P(O2) of 1.6 × 10-26 atm increased with surface area. Because ceria/LA samples were stable, equilibrium isotherms were determined between 873 and 973 K on a 30-wt% ceria sample. Oxidation enthalpies on ceria/LA were found to vary with the extent of reduction, ranging from -500 kJ/mol O2 at low extents of reduction to near the bulk value of -760 kJ/mol O2 at higher extents. To determine whether +3 dopants could affect the oxidation enthalpies for ceria, isotherms were measured for Sm+3-doped ceria (SDC) and Y+3-doped ceria. These dopants were found to remove the phase transition observed in pure ceria below 973 K but appeared to have minimal effect on the oxidation enthalpies. Implications of these results for catalytic applications of ceria are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1694281
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 96
  • ???jsp.display-item.citation.isi??? 97
social impact