The paper deals with the problem of positioning a manipulator in a cluttered environment while avoiding collision with obstacles. Recently a control strategy based on invariant sets has been introduced by some of the authors: it consists of covering the configuration space by means of a connected family of poly- hedral regions which can be rendered controlled-invariant. Each of these regions includes some crossing points to the confining (and partially overlapping) regions. The control is hierarchically structured: a high-level controller establishes a proper sequence of regions to be crossed to reach the one in which the target con- figuration is included. A low-level controller solves the problem of tracking, within a region, the crossing point to the next con- fining region and, eventually, tracking the reference whenever it is included in the current one. Here we focus on the low-level controller, providing two novel contributions: first we extend the previous results, based on a vertex representation of the polyhedral sets, to the face representation which is more natural and offers significant computational advantages for on-line implementation; second, we provide a new low-level speed-saturated controller in order to improve the performance of the previous one in terms of convergence speed. We also investigate the robustness of the proposed controller. Experimental results on a Cartesian robot are provided.

Enhancing controller performance for robot positioning in a constrained environment

PELLEGRINO, FELICE ANDREA;
2008-01-01

Abstract

The paper deals with the problem of positioning a manipulator in a cluttered environment while avoiding collision with obstacles. Recently a control strategy based on invariant sets has been introduced by some of the authors: it consists of covering the configuration space by means of a connected family of poly- hedral regions which can be rendered controlled-invariant. Each of these regions includes some crossing points to the confining (and partially overlapping) regions. The control is hierarchically structured: a high-level controller establishes a proper sequence of regions to be crossed to reach the one in which the target con- figuration is included. A low-level controller solves the problem of tracking, within a region, the crossing point to the next con- fining region and, eventually, tracking the reference whenever it is included in the current one. Here we focus on the low-level controller, providing two novel contributions: first we extend the previous results, based on a vertex representation of the polyhedral sets, to the face representation which is more natural and offers significant computational advantages for on-line implementation; second, we provide a new low-level speed-saturated controller in order to improve the performance of the previous one in terms of convergence speed. We also investigate the robustness of the proposed controller. Experimental results on a Cartesian robot are provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1843859
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact