In this paper we are interested in the polynomial Krylov approximations for the computation of ϕ(A)v, where A is a square matrix, v represents a given vector, and ϕ is a suitable function which can be employed in modern integrators for differential problems. Our aim consists of proposing and analyzing innovative a posteriori error estimates which allow a good control of the approximation procedure. The effectiveness of the results we provide is tested on some numerical examples of interest.

Error estimates for polynomial Krylov approximations to matrix functions

MORET, IGOR;
2009-01-01

Abstract

In this paper we are interested in the polynomial Krylov approximations for the computation of ϕ(A)v, where A is a square matrix, v represents a given vector, and ϕ is a suitable function which can be employed in modern integrators for differential problems. Our aim consists of proposing and analyzing innovative a posteriori error estimates which allow a good control of the approximation procedure. The effectiveness of the results we provide is tested on some numerical examples of interest.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2278356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact