The atomic axial tensor (AAT) of vibrational circular dichroism is expressed as the frequency derivative at zero frequency of a linear response function for operators referencing a nuclear displacement and a magnetic field. This is used in the density matrix-based quasienergy derivative Lagrangian approach of Thorvaldsen et al. [J. Chem. Phys., 2008, 129, 214108] to express the AAT in a form where the need to solve response equations for the nuclear displacements is removed, significantly reducing the computation cost compared to existing formulations. The density matrix-based quasienergy derivative Lagrangian approach also allows us straightforwardly to use London atomic orbitals to remove the gauge-origin dependence and to account for the atomic orbitals' dependence on the nuclear coordinates. The formalism is entirely based on atomic-orbital density and integral matrices and therefore amenable to linear scaling for sufficiently sparse matrices and given a linearly scaling response solver.

Variational response-function formulation of vibrational circular dichroism

CORIANI, Sonia;
2011-01-01

Abstract

The atomic axial tensor (AAT) of vibrational circular dichroism is expressed as the frequency derivative at zero frequency of a linear response function for operators referencing a nuclear displacement and a magnetic field. This is used in the density matrix-based quasienergy derivative Lagrangian approach of Thorvaldsen et al. [J. Chem. Phys., 2008, 129, 214108] to express the AAT in a form where the need to solve response equations for the nuclear displacements is removed, significantly reducing the computation cost compared to existing formulations. The density matrix-based quasienergy derivative Lagrangian approach also allows us straightforwardly to use London atomic orbitals to remove the gauge-origin dependence and to account for the atomic orbitals' dependence on the nuclear coordinates. The formalism is entirely based on atomic-orbital density and integral matrices and therefore amenable to linear scaling for sufficiently sparse matrices and given a linearly scaling response solver.
2011
http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp02230f
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2336244
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact