Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.
Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
DAL FORNO, MASSIMO;FERRARI, EUGENIO;NOE', SALVATORE;PARMIGIANI, FULVIO;
2012-01-01
Abstract
Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.