Revealing the nature of charge excitations in strongly correlated electron systems is crucial to understanding their exotic properties. Here we use broadband ultrafast pump-probe spectroscopy in the visible range to study low-energy transitions across the Mott-Hubbard gap in the orbitally ordered insulator YVO 3 . Separating thermal and nonthermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e., a resonance or a nearly bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin disorder can be used to quantify the kinetic energy gain of the excitons in a ferromagnetic environment.

Ultrafast optical spectroscopy of the lowest energy excitations in the Mott insulator compound YVO_{3}: Evidence for Hubbard-type excitons

NOVELLI, FABIO;FAUSTI, DANIELE;CILENTO, FEDERICO;PARMIGIANI, FULVIO
2012-01-01

Abstract

Revealing the nature of charge excitations in strongly correlated electron systems is crucial to understanding their exotic properties. Here we use broadband ultrafast pump-probe spectroscopy in the visible range to study low-energy transitions across the Mott-Hubbard gap in the orbitally ordered insulator YVO 3 . Separating thermal and nonthermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e., a resonance or a nearly bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin disorder can be used to quantify the kinetic energy gain of the excitons in a ferromagnetic environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2631069
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact