A phase-field approach is presented for the numerical simulation of two-phase forced flow in channels. The difference in physical properties of the two components is handled following a quasi-incompressible approach (Lowengrub and Truskinovsky [16]). The axisymmetric form of the Navier − Stokes and Cahn − Hilliard equations system is solved for a narrow pipe of radius R = 1 mm, where buoyancy effects are neglected. Results of three simulations for the evolution of spherical and elongated bubbles are reported.

A Phase-Field Approach for Liquid-Liquid Flow Simulations

PILLER, MARZIO
2013

Abstract

A phase-field approach is presented for the numerical simulation of two-phase forced flow in channels. The difference in physical properties of the two components is handled following a quasi-incompressible approach (Lowengrub and Truskinovsky [16]). The axisymmetric form of the Navier − Stokes and Cahn − Hilliard equations system is solved for a narrow pipe of radius R = 1 mm, where buoyancy effects are neglected. Results of three simulations for the evolution of spherical and elongated bubbles are reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2716281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact