The relationship between the random-phase-approximation (RPA) correlation energy and the continuous algebraic Riccati equation is examined and the importance of a stabilizing solution is emphasized. The criterion to distinguish this from non-stabilizing solutions can be used to ensure that physical, smooth potential energy surfaces are obtained. An implementation of analytic RPA molecular gradients is presented using the Lagrangian technique. Illustrative calculations indicate that RPA with Hartree-Fock reference orbitals delivers an accuracy similar to that of second-order Møller– Plesset perturbation theory

Communication: Analytic gradients in the random-phase approximation

CORIANI, Sonia;
2013

Abstract

The relationship between the random-phase-approximation (RPA) correlation energy and the continuous algebraic Riccati equation is examined and the importance of a stabilizing solution is emphasized. The criterion to distinguish this from non-stabilizing solutions can be used to ensure that physical, smooth potential energy surfaces are obtained. An implementation of analytic RPA molecular gradients is presented using the Lagrangian technique. Illustrative calculations indicate that RPA with Hartree-Fock reference orbitals delivers an accuracy similar to that of second-order Møller– Plesset perturbation theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2755774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact