SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the proline-rich antimicrobial peptide Bac7(1-35) as a substrate. Circular dichroism and affinity chromatography studies were used to investigate the ability of SbmA to bind the peptide, and a whole-cell transport assay with fluorescently labeled peptide allowed the determination of transport kinetic parameters with a calculated Km value of 6.95 ± 0.89 μM peptide and a Vmax of 53.91 ± 3.17 nmol/min/mg SbmA. Use of a bacterial two-hybrid system coupled to SEC-MALLS (size exclusion chromatography coupled with multiangle laser light scattering) analyses established that SbmA is a homodimer in the membrane, and treatment of the cells with arsenate or ionophores indicated that the peptide transport mediated by SbmA is driven by the electrochemical gradient. Overall, these results shed light on the SbmA-mediated internalization of peptide substrates and suggest that the transport of an unknown substrate(s) represents the function of this protein.

Functional characterization of SbmA, a bacterial inner membrane transporter required for importing the antimicrobial peptide Bac7(1-35).

RUNTI, GIULIA;BENINCASA, MONICA;GENNARO, RENATO;SCOCCHI, MARCO
2013

Abstract

SbmA is an inner membrane protein of Gram-negative bacteria that is involved in the internalization of glycopeptides and prokaryotic and eukaryotic antimicrobial peptides, as well as of peptide nucleic acid (PNA) oligomers. The SbmA homolog BacA is required for the development of Sinorhizobium meliloti bacteroids within plant cells and favors chronic infections with Brucella abortus and Mycobacterium tuberculosis in mice. Here, we investigated functional features of SbmA/BacA using the proline-rich antimicrobial peptide Bac7(1-35) as a substrate. Circular dichroism and affinity chromatography studies were used to investigate the ability of SbmA to bind the peptide, and a whole-cell transport assay with fluorescently labeled peptide allowed the determination of transport kinetic parameters with a calculated Km value of 6.95 ± 0.89 μM peptide and a Vmax of 53.91 ± 3.17 nmol/min/mg SbmA. Use of a bacterial two-hybrid system coupled to SEC-MALLS (size exclusion chromatography coupled with multiangle laser light scattering) analyses established that SbmA is a homodimer in the membrane, and treatment of the cells with arsenate or ionophores indicated that the peptide transport mediated by SbmA is driven by the electrochemical gradient. Overall, these results shed light on the SbmA-mediated internalization of peptide substrates and suggest that the transport of an unknown substrate(s) represents the function of this protein.
http://jb.asm.org/content/195/23/5343.long
File in questo prodotto:
File Dimensione Formato  
JBacteriol-SbmA1.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2763459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 73
social impact