Because they are bright and distant, Gamma-ray Bursts (GRBs) have been used for more than a decade to test propagation of photons and to constrain relevant Quantum Gravity (QG) models in which the velocity of photons in vacuum can depend on their energy. With its unprecedented sensitivity and energy coverage, the Fermi satellite has provided the most constraining results on the QG energy scale so far. In this talk, the latest results obtained from the analysis of four bright GRBs observed by the Large Area Telescope will be reviewed. These robust results, cross-checked using three different analysis techniques set the limit on QG energy scale at E>7.6 times the Planck energy for linear dispersion and E>1.3×1011GeV for quadratic dispersion (95% CL). After describing the data and the analysis techniques in use, results will be discussed and confronted to latest constraints obtained with Active Galactic Nuclei.

Lorentz invariance violation: The latest Fermi results and the GRB/ AGN complementarity

LONGO, FRANCESCO
2014

Abstract

Because they are bright and distant, Gamma-ray Bursts (GRBs) have been used for more than a decade to test propagation of photons and to constrain relevant Quantum Gravity (QG) models in which the velocity of photons in vacuum can depend on their energy. With its unprecedented sensitivity and energy coverage, the Fermi satellite has provided the most constraining results on the QG energy scale so far. In this talk, the latest results obtained from the analysis of four bright GRBs observed by the Large Area Telescope will be reviewed. These robust results, cross-checked using three different analysis techniques set the limit on QG energy scale at E>7.6 times the Planck energy for linear dispersion and E>1.3×1011GeV for quadratic dispersion (95% CL). After describing the data and the analysis techniques in use, results will be discussed and confronted to latest constraints obtained with Active Galactic Nuclei.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2766737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact