Leaf hydraulic conductance (Kleaf) and drought vulnerability in terms of leaf water potential inducing 50% loss of Kleaf (P50), were assessed in four genotypes of Coffea arabica L. We tested three hypotheses: (1) leaf P50 is lower in small leaves with higher vein densities; (2) lower P50 translates into lower Kleaf, limiting gas exchange rates and higher leaf mass per unit area (LMA); (3) P50 values are coordinated with symplastic drought tolerance. We found partial support for Hypotheses 1 and 3, but not for Hypothesis 2. Significant correlations existed among leaf size, vein network and drought resistance. Smaller leaves displayed higher major vein density, higher Kleaf and more negative P50. Kleaf was correlated with leaf gas exchange rates. A negative relationship was observed between Kleaf and LMA, whereas P50 was found to be positively correlated with LMA. Across coffee genotypes, reduced leaf surface area and increased vein density shifts P50 towards more negative values while not translating into higher LMA or lower Kleaf. Breeding crop varieties for both increased safety of the leaf hydraulic system towards drought-induced dysfunction and high gas exchange rates per unit of leaf area is probably a feasible target for future adaptation of crops to climate change scenarios.

When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica L. genotypes

NARDINI, Andrea;SAVI, TADEJA
2014-01-01

Abstract

Leaf hydraulic conductance (Kleaf) and drought vulnerability in terms of leaf water potential inducing 50% loss of Kleaf (P50), were assessed in four genotypes of Coffea arabica L. We tested three hypotheses: (1) leaf P50 is lower in small leaves with higher vein densities; (2) lower P50 translates into lower Kleaf, limiting gas exchange rates and higher leaf mass per unit area (LMA); (3) P50 values are coordinated with symplastic drought tolerance. We found partial support for Hypotheses 1 and 3, but not for Hypothesis 2. Significant correlations existed among leaf size, vein network and drought resistance. Smaller leaves displayed higher major vein density, higher Kleaf and more negative P50. Kleaf was correlated with leaf gas exchange rates. A negative relationship was observed between Kleaf and LMA, whereas P50 was found to be positively correlated with LMA. Across coffee genotypes, reduced leaf surface area and increased vein density shifts P50 towards more negative values while not translating into higher LMA or lower Kleaf. Breeding crop varieties for both increased safety of the leaf hydraulic system towards drought-induced dysfunction and high gas exchange rates per unit of leaf area is probably a feasible target for future adaptation of crops to climate change scenarios.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2816323
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact