Knowing the effective thermal conductivity is essential in order to design a metal foam heat transfer device. Beside the experimental characterization tests, this quantity can be deduced from empirical correlations and theoretical models. Moreover, CFD (Computational Fluid Dynamics) and numerical modeling in general, at the pore scale, are becoming a promising alternative, especially when coupled with a realistic description of the foam structure, which can be recovered from X-ray computed microtomography (μ-CT). In this work, a review of the most relevant correlations and models published in the literature, usable for the estimation of the effective thermal conductivity of metal foams, will be outlined. In addition, a validation of the models with the experimental values available in the literature will be presented, for both air and water as working fluids. Furthermore, the results of a strategy based on μ-CT – CFD coupling at the pore level will be illustrated.

On the effective thermal conductivity of metal foams

RANUT, PAOLA;NOBILE, ENRICO
2014

Abstract

Knowing the effective thermal conductivity is essential in order to design a metal foam heat transfer device. Beside the experimental characterization tests, this quantity can be deduced from empirical correlations and theoretical models. Moreover, CFD (Computational Fluid Dynamics) and numerical modeling in general, at the pore scale, are becoming a promising alternative, especially when coupled with a realistic description of the foam structure, which can be recovered from X-ray computed microtomography (μ-CT). In this work, a review of the most relevant correlations and models published in the literature, usable for the estimation of the effective thermal conductivity of metal foams, will be outlined. In addition, a validation of the models with the experimental values available in the literature will be presented, for both air and water as working fluids. Furthermore, the results of a strategy based on μ-CT – CFD coupling at the pore level will be illustrated.
http://iopscience.iop.org/1742-6596/547/1/012021;jsessionid=48CA4D09776AC610DBE09B03C0AA6A2A.c3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2829396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact