Abstract PURPOSE OF REVIEW: Angiotensin-converting enzyme 2 (ACE2) has recently emerged as a key regulator of the renin-angiotensin system in both health and disease. RECENT FINDINGS: ACE2 deficiency is associated with elevated tissue and circulating levels of angiotensin II and reduced levels of angiotensin 1-7. Phenotypically, this results in a modest elevation in systolic blood pressure and left ventricular hypertrophy. In atherosclerosis-prone apolipoprotein E knockout mice, ACE2 deficiency results in augmented vascular inflammation and an inflammatory response that contributes to increased atherosclerotic plaque formation. In the kidney, ACE2 deficiency is associated with progressive glomerulosclerosis. Interventions such as ACE2 replenishment or augmentation of its actions have proven successful in reducing hypertension, plaque accumulation, and renal and cardiac damage in a range of different models. Although promising, the balance of the renin-angiotensin system remains complicated, with some evidence that overexpression of ACE2 may have adverse cardiac effects, and ACE2 and its metabolic products may promote epithelial-to-mesenchymal transition. SUMMARY: Repletion of ACE2's activities offers a new strategy to complement current clinical interventions in treating hypertension, renal and cardiovascular disease. In particular conditions where ACE inhibition and angiotensin receptor blockade are partially effective, the adjunctive actions of ACE2 may not only reduce clinical escape but also augment the efficacy of interventions.

Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease

BERNARDI, STELLA;
2011-01-01

Abstract

Abstract PURPOSE OF REVIEW: Angiotensin-converting enzyme 2 (ACE2) has recently emerged as a key regulator of the renin-angiotensin system in both health and disease. RECENT FINDINGS: ACE2 deficiency is associated with elevated tissue and circulating levels of angiotensin II and reduced levels of angiotensin 1-7. Phenotypically, this results in a modest elevation in systolic blood pressure and left ventricular hypertrophy. In atherosclerosis-prone apolipoprotein E knockout mice, ACE2 deficiency results in augmented vascular inflammation and an inflammatory response that contributes to increased atherosclerotic plaque formation. In the kidney, ACE2 deficiency is associated with progressive glomerulosclerosis. Interventions such as ACE2 replenishment or augmentation of its actions have proven successful in reducing hypertension, plaque accumulation, and renal and cardiac damage in a range of different models. Although promising, the balance of the renin-angiotensin system remains complicated, with some evidence that overexpression of ACE2 may have adverse cardiac effects, and ACE2 and its metabolic products may promote epithelial-to-mesenchymal transition. SUMMARY: Repletion of ACE2's activities offers a new strategy to complement current clinical interventions in treating hypertension, renal and cardiovascular disease. In particular conditions where ACE inhibition and angiotensin receptor blockade are partially effective, the adjunctive actions of ACE2 may not only reduce clinical escape but also augment the efficacy of interventions.
File in questo prodotto:
File Dimensione Formato  
tikellis2011-1.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 252.4 kB
Formato Adobe PDF
252.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2831603
Citazioni
  • ???jsp.display-item.citation.pmc??? 73
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 119
social impact