Abstract BACKGROUND: This study aimed at investigating the effects of genetic angiotensin-converting enzyme (ACE) 2 deficiency on glucose homeostasis in the pancreas and skeletal muscle and their reversibility following ACE inhibition. PROCEDURES: ACE2-knockout and C57bl6J mice were placed on a standard diet (SD) or a high-fat diet (HFD) for 12weeks. An additional group of ACE2-knockout mice was fed a SD and treated with the ACE inhibitor, perindopril (2mgkg(-1)day(-1)). Glucose and insulin tolerance tests, indirect calorimetry measurements and EchoMRI were performed. Non-esterfied 'free' fatty acid oxidation rate in skeletal muscle was calculated by measuring the palmitate oxidation rate. β-cell mass was determined by immunostaining. Insulin, collectrin, glucose transporter protein, and peroxisome proliferator-activated receptor-γ expression were analysed by RT-PCR. Markers of mithocondrial biogenesis/content were also evaluated. MAIN FINDINGS: ACE2-knockout mice showed a β-cell defect associated with low insulin and collectrin levels and reduced compensatory hypertrophy in response to a HFD, which were not reversed by perindopril. On the other hand, ACE2 deficiency shifted energy metabolism towards glucose utilization, as it increased the respiratory exchange ratio, reduced palmitate oxidation and PCG-1α expression in the skeletal muscle, where it up-regulated glucose transport proteins. Treatment of ACE2-knockout mice with perindopril reversed the skeletal muscle changes, suggesting that these were dependent on Angiotensin II (Ang II). PRINCIPAL CONCLUSIONS: ACE2-knockout mice display a β-cell defect, which does not seem to be dependent on Ang II but may reflect the collectrin-like action of ACE2. This defect seemed to be compensated by the fact that ACE2-knockout mice shifted their energy consumption towards glucose utilisation via Ang II.

ACE2 deficiency shifts energy metabolism towards glucose utilization

BERNARDI, STELLA;CANDIDO, RICCARDO;BOSSI, FLEUR;CARRETTA, RENZO;FABRIS, BRUNO;
2015

Abstract

Abstract BACKGROUND: This study aimed at investigating the effects of genetic angiotensin-converting enzyme (ACE) 2 deficiency on glucose homeostasis in the pancreas and skeletal muscle and their reversibility following ACE inhibition. PROCEDURES: ACE2-knockout and C57bl6J mice were placed on a standard diet (SD) or a high-fat diet (HFD) for 12weeks. An additional group of ACE2-knockout mice was fed a SD and treated with the ACE inhibitor, perindopril (2mgkg(-1)day(-1)). Glucose and insulin tolerance tests, indirect calorimetry measurements and EchoMRI were performed. Non-esterfied 'free' fatty acid oxidation rate in skeletal muscle was calculated by measuring the palmitate oxidation rate. β-cell mass was determined by immunostaining. Insulin, collectrin, glucose transporter protein, and peroxisome proliferator-activated receptor-γ expression were analysed by RT-PCR. Markers of mithocondrial biogenesis/content were also evaluated. MAIN FINDINGS: ACE2-knockout mice showed a β-cell defect associated with low insulin and collectrin levels and reduced compensatory hypertrophy in response to a HFD, which were not reversed by perindopril. On the other hand, ACE2 deficiency shifted energy metabolism towards glucose utilization, as it increased the respiratory exchange ratio, reduced palmitate oxidation and PCG-1α expression in the skeletal muscle, where it up-regulated glucose transport proteins. Treatment of ACE2-knockout mice with perindopril reversed the skeletal muscle changes, suggesting that these were dependent on Angiotensin II (Ang II). PRINCIPAL CONCLUSIONS: ACE2-knockout mice display a β-cell defect, which does not seem to be dependent on Ang II but may reflect the collectrin-like action of ACE2. This defect seemed to be compensated by the fact that ACE2-knockout mice shifted their energy consumption towards glucose utilisation via Ang II.
http://www.sciencedirect.com/science/article/pii/S0026049514003618
File in questo prodotto:
File Dimensione Formato  
Metabolism.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2831617
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact