We consider the stability issue of the inverse conductivity problem for a conformal class of anisotropic conductivities in terms of the local Dirichlet– Neumann map. We extend here the stability result obtained by Alessandrini and Vessella (Alessandrini G and Vessella S 2005 Lipschitz stability for the inverse conductivity problem Adv. Appl. Math. 35 207–241), where the authors considered the piecewise constant isotropic case.
Titolo: | Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | We consider the stability issue of the inverse conductivity problem for a conformal class of anisotropic conductivities in terms of the local Dirichlet– Neumann map. We extend here the stability result obtained by Alessandrini and Vessella (Alessandrini G and Vessella S 2005 Lipschitz stability for the inverse conductivity problem Adv. Appl. Math. 35 207–241), where the authors considered the piecewise constant isotropic case. | |
Handle: | http://hdl.handle.net/11368/2840471 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/0266-5611/31/1/015008 | |
URL: | https://iopscience.iop.org/article/10.1088/0266-5611/31/1/015008 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Gaburro_Sincich.pdf | Documento in Versione Editoriale | Copyright Editore | Administrator Richiedi una copia | |
2840471_Gaburro_Sincich-PostPrint.pdf | Post Print VQR3 | Bozza finale post-referaggio (post-print) | Digital Rights Management non definito | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.