The technological improvements over the last years made considerable progresses in the knowledge of the etiology of intellectual Disability (ID). However, at present very little is known about the genetic heterogeneity underlying the non-syndromic form of ID (NS-ID). To investigate the genetic basis of NSID we analyzed 43 trios and 22 isolated NS-ID patients using a targeted sequencing (TS) approach. 71 NS-ID genes have been selected and sequenced in all subjects. We found putative pathogenic mutations in 7 out of 65 patients. The pathogenic role of mutations was evaluated through sequence comparison and structural analysis was performed to predict the effect of alterations in a 3D computational model through molecular dynamics simulations. Additionally, a deep patient clinical re-evaluation has been performed after the molecular results. This approach allowed us to find novel pathogenic mutations with a detection rate close to 11% in our cohort of patients. This result supports the hypothesis that many NS-ID related genes still remain to be discovered and that NS-ID is a more complex phenotype compared to syndromic form, likely caused by a complex and broad interaction between genes alterations and environment factors.

Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability

MORGAN, ANNA;GANDIN, ILARIA;BELCARO, CHIARA;DAL COL, VALENTINA;LAURINI, ERIK;PRICL, SABRINA;D'ADAMO, ADAMO PIO;FALETRA, FLAVIO;VOZZI, Diego
2015-01-01

Abstract

The technological improvements over the last years made considerable progresses in the knowledge of the etiology of intellectual Disability (ID). However, at present very little is known about the genetic heterogeneity underlying the non-syndromic form of ID (NS-ID). To investigate the genetic basis of NSID we analyzed 43 trios and 22 isolated NS-ID patients using a targeted sequencing (TS) approach. 71 NS-ID genes have been selected and sequenced in all subjects. We found putative pathogenic mutations in 7 out of 65 patients. The pathogenic role of mutations was evaluated through sequence comparison and structural analysis was performed to predict the effect of alterations in a 3D computational model through molecular dynamics simulations. Additionally, a deep patient clinical re-evaluation has been performed after the molecular results. This approach allowed us to find novel pathogenic mutations with a detection rate close to 11% in our cohort of patients. This result supports the hypothesis that many NS-ID related genes still remain to be discovered and that NS-ID is a more complex phenotype compared to syndromic form, likely caused by a complex and broad interaction between genes alterations and environment factors.
File in questo prodotto:
File Dimensione Formato  
Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2845929
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact