Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoral injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by qRT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumorally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labeled, noncoding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo.
Titolo: | Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Rivista: | ||
Abstract: | Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoral injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by qRT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumorally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labeled, noncoding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo. | |
Handle: | http://hdl.handle.net/11368/2849611 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1021/acs.bioconjchem.5b00249 | |
URL: | http://pubs.acs.org/journal/bcches | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication.pdf | pdf editoriale | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |