We present an adaptive density-guided approach for the construction of Born-Oppenheimer potential energy surfaces (PES) in rectilinear normal coordinates for use in vibrational structure calculations. The procedure uses one-mode densities from vibrational structure calculations for a dynamic sampling of PESs. The implementation of the procedure is described and the accuracy and versatility of the method is tested for a selection of model potentials, water, difluoromethane and pyrimidine. The test calculations illustrate the advantage of local basis sets over harmonic oscillator basis sets in some important aspects of our procedure.

An adaptive density-guided approach for the generation of potential energy surfaces of polyatomic molecules

TOFFOLI, DANIELE;
2009

Abstract

We present an adaptive density-guided approach for the construction of Born-Oppenheimer potential energy surfaces (PES) in rectilinear normal coordinates for use in vibrational structure calculations. The procedure uses one-mode densities from vibrational structure calculations for a dynamic sampling of PESs. The implementation of the procedure is described and the accuracy and versatility of the method is tested for a selection of model potentials, water, difluoromethane and pyrimidine. The test calculations illustrate the advantage of local basis sets over harmonic oscillator basis sets in some important aspects of our procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2870421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 64
social impact