We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain- specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (t_main = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (−0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of incremental scheme. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.
Molecular dipole moments within the incremental scheme using the domain-specific basis-set approach
CORIANI, Sonia;
2016-01-01
Abstract
We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain- specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (t_main = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (−0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of incremental scheme. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.File | Dimensione | Formato | |
---|---|---|---|
acs%2Ejctc%2E6b00076.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
887.19 kB
Formato
Adobe PDF
|
887.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ct6b00076_si_001.pdf
Accesso chiuso
Descrizione: Supporting info
Tipologia:
Altro materiale allegato
Licenza:
Digital Rights Management non definito
Dimensione
303.25 kB
Formato
Adobe PDF
|
303.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.