In this paper, the behavior of a grid-connected hybrid ac/dc microgrid has been investigated. Different renewable energy sources - photovoltaics modules and a wind turbine generator - have been considered together with a solid oxide fuel cell and a battery energy storage system. The main contribution of this paper is the design and the validation of an innovative online-trained artificial neural network-based control system for a hybrid microgrid. Adaptive neural networks are used to track the maximum power point of renewable energy generators and to control the power exchanged between the front-end converter and the electrical grid. Moreover, a fuzzy logic-based power management system is proposed in order to minimize the energy purchased from the electrical grid. The operation of the hybrid microgrid has been tested in the MATLAB/Simulink environment under different operating conditions. The obtained results demonstrate the effectiveness, the high robustness and the self-adaptation ability of the proposed control system.
Adaptive Neural Network-Based Control of a Hybrid AC/DC Microgrid
SULLIGOI, GIORGIO;MASSI PAVAN, ALESSANDRO
2018-01-01
Abstract
In this paper, the behavior of a grid-connected hybrid ac/dc microgrid has been investigated. Different renewable energy sources - photovoltaics modules and a wind turbine generator - have been considered together with a solid oxide fuel cell and a battery energy storage system. The main contribution of this paper is the design and the validation of an innovative online-trained artificial neural network-based control system for a hybrid microgrid. Adaptive neural networks are used to track the maximum power point of renewable energy generators and to control the power exchanged between the front-end converter and the electrical grid. Moreover, a fuzzy logic-based power management system is proposed in order to minimize the energy purchased from the electrical grid. The operation of the hybrid microgrid has been tested in the MATLAB/Simulink environment under different operating conditions. The obtained results demonstrate the effectiveness, the high robustness and the self-adaptation ability of the proposed control system.File | Dimensione | Formato | |
---|---|---|---|
Adaptive Neural Network-Based Control of a Hybrid ACDC Microgrid Final.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
07534749.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.