We investigate the possibility of extending a classical multiplicity result by Fabry, Mawhin and Nkashama to a periodic problem of Ambrosetti–Prodi type having a nonlinearity with possibly one or two singularities. In the second part of the paper we study the existence of periodic rotating solutions for radially symmetric systems with nonlinearities of the same type.

On a singular periodic Ambrosetti–Prodi problem

FONDA, ALESSANDRO;SFECCI, ANDREA
2017

Abstract

We investigate the possibility of extending a classical multiplicity result by Fabry, Mawhin and Nkashama to a periodic problem of Ambrosetti–Prodi type having a nonlinearity with possibly one or two singularities. In the second part of the paper we study the existence of periodic rotating solutions for radially symmetric systems with nonlinearities of the same type.
http://www.sciencedirect.com/science/article/pii/S0362546X16302528
File in questo prodotto:
File Dimensione Formato  
2017_Fonda-Sfecci_NA.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 647.57 kB
Formato Adobe PDF
647.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2886413_2017_Fonda-Sfecci_NA-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2886413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact