We study the structure of the set of the positive regular solutions of the one-dimensional quasilinear Neumann problem involving the curvature operator $$left({u'}/{sqrt{1+(u')^2}} ight)' = lambda a(x) f(u), quadu'(0)=0,,,u'(1)=0. $$ Here $lambda in R$ is a parameter, $a in L^1(0,1) $ changes sign, and $fin mc{C}(R)$. We focus on the case where the slope of $f$ at $0$, $f'(0)$, is finite and non-zero, and the potential of $f$ is superlinear at infinity, but also the two limiting cases where $f'(0)=0$, or $f'(0)=+infty$, are discussed. We investigate, in some special configurations, the possible development of singularities and the corresponding appearance in this problem of bounded variation solutions.

Bifurcation of positive solutions for a one-dimensional indefinite quasilinear Neumann problem

OMARI, PIERPAOLO;
2017

Abstract

We study the structure of the set of the positive regular solutions of the one-dimensional quasilinear Neumann problem involving the curvature operator $$left({u'}/{sqrt{1+(u')^2}} ight)' = lambda a(x) f(u), quadu'(0)=0,,,u'(1)=0. $$ Here $lambda in R$ is a parameter, $a in L^1(0,1) $ changes sign, and $fin mc{C}(R)$. We focus on the case where the slope of $f$ at $0$, $f'(0)$, is finite and non-zero, and the potential of $f$ is superlinear at infinity, but also the two limiting cases where $f'(0)=0$, or $f'(0)=+infty$, are discussed. We investigate, in some special configurations, the possible development of singularities and the corresponding appearance in this problem of bounded variation solutions.
Pubblicato
http://www.sciencedirect.com/science/article/pii/S0362546X17300135
File in questo prodotto:
File Dimensione Formato  
LGOS NA.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
LOR NA post print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 621.11 kB
Formato Adobe PDF
621.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2889997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact