Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of stateof- the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50mVoverpotential). The Tafel slope of B130mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.
Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution
MELCHIONNA, MICHELE;FORNASIERO, Paolo;PRATO, MAURIZIO;
2016-01-01
Abstract
Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of stateof- the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50mVoverpotential). The Tafel slope of B130mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.File | Dimensione | Formato | |
---|---|---|---|
ncomms13549.pdf
accesso aperto
Descrizione: Nature Commun 2016
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
ncomms13549-s1.pdf
accesso aperto
Descrizione: Supporting information
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
3.52 MB
Formato
Adobe PDF
|
3.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.