The extraordinary electronic and optical properties of the crystal-to-amorphous transition in phase-change materials have led to important developments in memory applications. A promising outlook is offered by nanoscaling such phase-change structures. Following this research line, we study the interband optical transmission spectra of nanoscaled GeTe/Sb2Te3 chalcogenide superlattice films. We determine, for films with varying stacking sequence and growth methods, the density and scattering time of the free carriers, and the characteristics of the valence-to-conduction transition. It is found that the free carrier density decreases with increasing GeTe content, for sublayer thicknesses below ∼3 nm. A simple band model analysis suggests that GeTe and Sb2Te3 layers mix, forming a standard GeSbTe alloy buffer layer.We show that it is possible to control the electronic transport properties of the films by properly choosing the deposition layer thickness, and we derive a model for arbitrary film stacks.
Interband characterization and electronic transport control of nanoscaled GeTe/Sb2Te3 superlattices
CARETTA, ANTONIO;CASARIN, BARBARA;PARMIGIANI, FULVIO;MALVESTUTO, MARCO
2016-01-01
Abstract
The extraordinary electronic and optical properties of the crystal-to-amorphous transition in phase-change materials have led to important developments in memory applications. A promising outlook is offered by nanoscaling such phase-change structures. Following this research line, we study the interband optical transmission spectra of nanoscaled GeTe/Sb2Te3 chalcogenide superlattice films. We determine, for films with varying stacking sequence and growth methods, the density and scattering time of the free carriers, and the characteristics of the valence-to-conduction transition. It is found that the free carrier density decreases with increasing GeTe content, for sublayer thicknesses below ∼3 nm. A simple band model analysis suggests that GeTe and Sb2Te3 layers mix, forming a standard GeSbTe alloy buffer layer.We show that it is possible to control the electronic transport properties of the films by properly choosing the deposition layer thickness, and we derive a model for arbitrary film stacks.File | Dimensione | Formato | |
---|---|---|---|
Caretta16.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
599.4 kB
Formato
Adobe PDF
|
599.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.