The influence of phosphorus and water on methane catalytic combustion was studied over Pd@CeO2 model catalysts supported on graphite, designed to be suitable for X-ray Photoelectron Spectroscopy/Synchrotron Radiation Photoelectron Spectroscopy (XPS/SRPES) analysis. In the absence of P, the catalyst was active for the methane oxidation reaction, although introduction of 15% H2O to the reaction mixture did cause reversible deactivation. In the presence of P, both thermal and chemical aging treatments resulted in partial loss of activity due to morphological transformation of the catalyst, as revealed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analysis. At 600 °C the combined presence of PO43− and water vapor caused a rapid, irreversible deactivation of the catalyst. XPS/SRPES analysis, combined with operando X-ray Absorption Near Edge Structure (XANES) and AFM measurements, indicated that water induces severe aggregation of CeO2 nanoparticles, exposure of CePO4 on the outer layer of the aggregates and incorporation of the catalytic-active Pd nanoparticles into the bulk. This demonstrates a temperature-activated process for P-poisoning of oxidation catalysts in which water vapor plays a crucial role.

Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts

MONAI, MATTEO;MONTINI, TIZIANO;MELCHIONNA, MICHELE;FORNASIERO, Paolo
2016-01-01

Abstract

The influence of phosphorus and water on methane catalytic combustion was studied over Pd@CeO2 model catalysts supported on graphite, designed to be suitable for X-ray Photoelectron Spectroscopy/Synchrotron Radiation Photoelectron Spectroscopy (XPS/SRPES) analysis. In the absence of P, the catalyst was active for the methane oxidation reaction, although introduction of 15% H2O to the reaction mixture did cause reversible deactivation. In the presence of P, both thermal and chemical aging treatments resulted in partial loss of activity due to morphological transformation of the catalyst, as revealed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analysis. At 600 °C the combined presence of PO43− and water vapor caused a rapid, irreversible deactivation of the catalyst. XPS/SRPES analysis, combined with operando X-ray Absorption Near Edge Structure (XANES) and AFM measurements, indicated that water induces severe aggregation of CeO2 nanoparticles, exposure of CePO4 on the outer layer of the aggregates and incorporation of the catalytic-active Pd nanoparticles into the bulk. This demonstrates a temperature-activated process for P-poisoning of oxidation catalysts in which water vapor plays a crucial role.
2016
Pubblicato
http://www.sciencedirect.com/science/article/pii/S0926337315301831
File in questo prodotto:
File Dimensione Formato  
monai2015.pdf

Open Access dal 10/10/2017

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri
1-s2.0-S0926337315301831-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2897582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact