A comparison between the experimental current-voltage (I-V) and power-voltage (P-V) characteristics of PhotoVoltaic (PV) modules, and the prediction of an explicit empirical model has been carried out. The model consists of an explicit expression for the current as a function of the voltage; the only inputs are the parameters that are always directly available in the manufacturer’s datasheet. The comparison was carried out on four representative PV technologies, based on polycrystalline Si, Heterojunction with Intrinsic Thin layer (HIT), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe). The comparison reveals that the model replicates the experimental I-V and P-V curves to a very good degree of accuracy for the considered operating conditions and PV technologies. This validation sets a turning point in PV modelling, as it enables a reliable use of this accessible model.

Explicit empirical model for photovoltaic devices. Experimental validation

MASSI PAVAN, ALESSANDRO;LUGHI, VANNI
2017-01-01

Abstract

A comparison between the experimental current-voltage (I-V) and power-voltage (P-V) characteristics of PhotoVoltaic (PV) modules, and the prediction of an explicit empirical model has been carried out. The model consists of an explicit expression for the current as a function of the voltage; the only inputs are the parameters that are always directly available in the manufacturer’s datasheet. The comparison was carried out on four representative PV technologies, based on polycrystalline Si, Heterojunction with Intrinsic Thin layer (HIT), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe). The comparison reveals that the model replicates the experimental I-V and P-V curves to a very good degree of accuracy for the considered operating conditions and PV technologies. This validation sets a turning point in PV modelling, as it enables a reliable use of this accessible model.
2017
lug-2017
Pubblicato
http://www.sciencedirect.com/science/article/pii/S0038092X17305753
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0038092X17305753-main.pdf

Open Access dal 09/06/2019

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2907124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 23
social impact