Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 µg twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.

Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease

GORTAN CAPPELLARI, GIANLUCA;SEMOLIC, ANNA MARIA;Ruozi, Giulia;VINCI, PIERANDREA;GUARNIERI, GIANFRANCO;BORTOLOTTI, Francesca;BARBETTA, DAVIDE;ZANETTI, MICHELA;GIACCA, MAURO;BARAZZONI, ROCCO
2017-01-01

Abstract

Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 µg twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
2017
4-ago-2017
Pubblicato
http://www.fasebj.org/doi/pdf/10.1096/fj.201700126R
File in questo prodotto:
File Dimensione Formato  
supplemental data.pdf

Accesso chiuso

Descrizione: supplemental data
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 931.27 kB
Formato Adobe PDF
931.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
fj.201700126r.pdf

Accesso chiuso

Descrizione: Liberamente accessibile dal sito dell'editore
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2909335_fj.201700126r-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
2909335_supplemental data-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2909335
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact