We present a multiaperture analyzer setup for performing x-ray phase contrast imaging in planar and three-dimensional modalities. The method is based on strongly structuring the x-ray beam with an amplitude modulator, before it reaches the sample, and on a multiaperture analyzing element before detection. A multislice representation of the sample is used to establish a quantitative relation between projection images and the corresponding three-dimensional distributions, leading to successful tomographic reconstruction. Sample absorption, phase, and scattering are retrieved from the measurement of five intensity projections. The method is tested on custom-built phantoms with synchrotron radiation: sample absorption and phase can be reliably retrieved also in combination with strong scatterers, simultaneously attaining high sensitivity and dynamic range.

X-ray Phase-Contrast Radiography and Tomography with a Multiaperture Analyzer

Rigon, L.;Dreossi, D.;Olivo, A.
2017-01-01

Abstract

We present a multiaperture analyzer setup for performing x-ray phase contrast imaging in planar and three-dimensional modalities. The method is based on strongly structuring the x-ray beam with an amplitude modulator, before it reaches the sample, and on a multiaperture analyzing element before detection. A multislice representation of the sample is used to establish a quantitative relation between projection images and the corresponding three-dimensional distributions, leading to successful tomographic reconstruction. Sample absorption, phase, and scattering are retrieved from the measurement of five intensity projections. The method is tested on custom-built phantoms with synchrotron radiation: sample absorption and phase can be reliably retrieved also in combination with strong scatterers, simultaneously attaining high sensitivity and dynamic range.
File in questo prodotto:
File Dimensione Formato  
Endrizzi_PhysRevLett.118.243902.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2913044
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact