Hydraulic failure and carbon starvation are recognized as main causes of drought-induced forest decline. As water transport and carbon dynamics are strictly interdependent, it is necessary to clarify how dehydration-rehydration cycles are affecting the relations between stem embolism and non-structural carbohydrates (NSC). This is particularly needed for conifers whose embolism repair capability is still controversial. Potted Norway spruce saplings underwent two drought-re-irrigation cycles of same intensity, but performed in two consecutive summers. During the second cycle, stem percent loss of hydraulic conductivity (PLC) and NSC content showed no carry-over effects from the previous drought, indicating complete long-term recovery. The second drought treatment induced moderate PLC (20%) and did not affect total NSCs content, while starch was converted to soluble sugars in the bark. After one week of re-irrigation, PLC recovered to pre-stress values (0%) and NSCs were depleted, only in the wood, by about 30%. Our data suggest that spruce can repair xylem embolism and that, when water is newly available, NSCs stored in xylem parenchyma can be mobilized over short term to sustain respiration and/or for processes involved in xylem transport restoration. This, however, might imply dependency on sapwood NSC reserves for survival, especially if frequent drought spells occur.

Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings

Tomasella, Martina
;
Nardini, Andrea;
2017-01-01

Abstract

Hydraulic failure and carbon starvation are recognized as main causes of drought-induced forest decline. As water transport and carbon dynamics are strictly interdependent, it is necessary to clarify how dehydration-rehydration cycles are affecting the relations between stem embolism and non-structural carbohydrates (NSC). This is particularly needed for conifers whose embolism repair capability is still controversial. Potted Norway spruce saplings underwent two drought-re-irrigation cycles of same intensity, but performed in two consecutive summers. During the second cycle, stem percent loss of hydraulic conductivity (PLC) and NSC content showed no carry-over effects from the previous drought, indicating complete long-term recovery. The second drought treatment induced moderate PLC (20%) and did not affect total NSCs content, while starch was converted to soluble sugars in the bark. After one week of re-irrigation, PLC recovered to pre-stress values (0%) and NSCs were depleted, only in the wood, by about 30%. Our data suggest that spruce can repair xylem embolism and that, when water is newly available, NSCs stored in xylem parenchyma can be mobilized over short term to sustain respiration and/or for processes involved in xylem transport restoration. This, however, might imply dependency on sapwood NSC reserves for survival, especially if frequent drought spells occur.
Pubblicato
https://www.nature.com/articles/s41598-017-14645-w
File in questo prodotto:
File Dimensione Formato  
s41598-017-14645-w.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2915023
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact