The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure.When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states.

Bulk diffusive relaxation mechanisms in optically excited topological insulators

Sbuelz, L.;Cilento, F.
Membro del Collaboration Group
;
Parmigiani, F.
Membro del Collaboration Group
2017-01-01

Abstract

The possibility to inject spin currents in topological insulators (TIs) by ultrashort optical pulses has stimulated intense studies of their out-of-equilibrium electronic properties. However, a comprehensive description of the electronic relaxation dynamics has been elusive, so far. In order to reveal the role of the bulk and surface states in the microscopic scattering mechanisms, we have investigated, by means of time- and angle-resolved photoemission spectroscopy, a wide set of TIs. These have been selected in order to display different positions of the Fermi energy (EF) within the bulk band structure.When three-dimensional bulk states lie at EF, we observe a fast relaxation dynamics with a characteristic time scale of a few picoseconds (ps). On the contrary, a long lasting excited state is recorded when only the two-dimensional surface state crosses EF. These findings suggest the important role played by spatial diffusion in the direction orthogonal to the surface in governing the relaxation mechanisms. We propose that this electron diffusive mechanism is driven by the optically induced temperature gradient that is at play only for electrons residing in bulk states.
2017
Pubblicato
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.115431
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.115431.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 672.75 kB
Formato Adobe PDF
672.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2917389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact