We investigate how ultracold atoms in double well potentials can be used to study and put bounds on models describing wave function collapse. We refer in particular to the continuous spontaneous localization (CSL) model, which is the most well studied among dynamical reduction models. It modifies the Schrodinger equation in order to include the collapse of the wave function in its dynamics. We consider Bose Josephson junctions, where ultracold bosons are trapped in a double well potential,since they can be experimentally controlled with high accuracy and are suited and used to study macroscopic quantum phenomena on scale of microns with a number of particles typically ranging from ∼10^2−10^3 to ∼10^5−10^6. We study the CSL dynamics of three atomic states showing macroscopic quantum coherence: the atomic coherent state, the superposition of two atomic coherent states, and the NOON state. We show that for the last two states the suppression of quantum coherence induced by CSL model increases exponentially with the number of atoms. We observe that, in the case of optically trapped atoms, the spontaneous photon emission of the atoms induce a dynamics similar to the CSL one and we conclude that magnetically trapped atoms may be more convenient to experimentally test the CSL model. We finally discuss decoherence effects in order to provide reasonable estimates on the bounds that it is (or it will) possible to obtain for the parameters of the CSL model in such class of experiments: as an example, we show that a NOON state with N∼10^3 with a coherence time of ∼1 s can constrain the CSL parameters in a region where the other systems presently cannot.

Collapse in ultracold Bose Josephson junctions

Bilardello, M.
Membro del Collaboration Group
;
Trombettoni, A.;Bassi, A.
Membro del Collaboration Group
2017-01-01

Abstract

We investigate how ultracold atoms in double well potentials can be used to study and put bounds on models describing wave function collapse. We refer in particular to the continuous spontaneous localization (CSL) model, which is the most well studied among dynamical reduction models. It modifies the Schrodinger equation in order to include the collapse of the wave function in its dynamics. We consider Bose Josephson junctions, where ultracold bosons are trapped in a double well potential,since they can be experimentally controlled with high accuracy and are suited and used to study macroscopic quantum phenomena on scale of microns with a number of particles typically ranging from ∼10^2−10^3 to ∼10^5−10^6. We study the CSL dynamics of three atomic states showing macroscopic quantum coherence: the atomic coherent state, the superposition of two atomic coherent states, and the NOON state. We show that for the last two states the suppression of quantum coherence induced by CSL model increases exponentially with the number of atoms. We observe that, in the case of optically trapped atoms, the spontaneous photon emission of the atoms induce a dynamics similar to the CSL one and we conclude that magnetically trapped atoms may be more convenient to experimentally test the CSL model. We finally discuss decoherence effects in order to provide reasonable estimates on the bounds that it is (or it will) possible to obtain for the parameters of the CSL model in such class of experiments: as an example, we show that a NOON state with N∼10^3 with a coherence time of ∼1 s can constrain the CSL parameters in a region where the other systems presently cannot.
2017
Pubblicato
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.032134
File in questo prodotto:
File Dimensione Formato  
PhysRevA.95.032134.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 620.63 kB
Formato Adobe PDF
620.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2918765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact