Large-scale intraplate deformation of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented. In contrast, the impact of continental collision between Arabia and Eurasia on lithosphere tectonics in front of the main suture zone, has received much less attention. The resulting Neogene shortening and uplift of the external Zagros, Alborz, Kopeh Dagh and Caucasus Mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5. Ma. At the same time, subsidence accelerated in the adjacent Caspian, Turan and Amu Darya basins. We present evidence for interference of lithospheric folding patterns induced by the Arabian and Indian collision with Eurasia. Wavelengths and spatial patterns are inferred from satellite-derived topography and gravity models. The observed interference of the patterns of folding appears to be primarily the result of spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang-Tunka Line.

Interference of lithospheric folding in western Central Asia by simultaneous Indian and Arabian plate indentation

Tesauro, M.
Investigation
;
Kaban, M.
2013-01-01

Abstract

Large-scale intraplate deformation of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented. In contrast, the impact of continental collision between Arabia and Eurasia on lithosphere tectonics in front of the main suture zone, has received much less attention. The resulting Neogene shortening and uplift of the external Zagros, Alborz, Kopeh Dagh and Caucasus Mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5. Ma. At the same time, subsidence accelerated in the adjacent Caspian, Turan and Amu Darya basins. We present evidence for interference of lithospheric folding patterns induced by the Arabian and Indian collision with Eurasia. Wavelengths and spatial patterns are inferred from satellite-derived topography and gravity models. The observed interference of the patterns of folding appears to be primarily the result of spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang-Tunka Line.
2013
Pubblicato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2920161
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 21
social impact