In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs). Inherited mutations in desmoplakin are associated with both heart and skin disease (cardiocutaneous syndrome). In this study, we investigated the mechanical properties of human keratinocytes harboring a cardiocutaneous-associated homozygous C-terminal truncation in desmoplakin (JD-1) compared to a control keratinocyte line (K1). Using Single Cell Force Spectroscopy (SCFS) AFM-based measurements, JD-1 keratinocytes displayed an overall alteration in morphology, elasticity, adhesion capabilities and viscoelastic properties, highlighting the profound interconnection between the adhesome pathways and the IF scaffold.

Cellular biomechanics impairment in keratinocytes is associated with a C-terminal truncated desmoplakin: An atomic force microscopy investigation

Puzzi L;Borin D;Martinelli V;Mestroni L;Sbaizero O
2018-01-01

Abstract

In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs). Inherited mutations in desmoplakin are associated with both heart and skin disease (cardiocutaneous syndrome). In this study, we investigated the mechanical properties of human keratinocytes harboring a cardiocutaneous-associated homozygous C-terminal truncation in desmoplakin (JD-1) compared to a control keratinocyte line (K1). Using Single Cell Force Spectroscopy (SCFS) AFM-based measurements, JD-1 keratinocytes displayed an overall alteration in morphology, elasticity, adhesion capabilities and viscoelastic properties, highlighting the profound interconnection between the adhesome pathways and the IF scaffold.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0968432817304225-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 711.82 kB
Formato Adobe PDF
711.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2921873_1-s2.0-S0968432817304225-main-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2921873
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact