We consider the inverse boundary value problem of determining the potential q in the equation Δu+qu=0 in Ω⊂Rn, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension n⩾3 for potentials that are piecewise linear on a given partition of Ω. No sign, nor spectrum condition on q is assumed, hence our treatment encompasses the reduced wave equation Δu+k2c−2u=0 at fixed frequency k.
Lipschitz stability for a piecewise linear Schrodinger potential from local Cauchy data
Giovanni Alessandrini
;Romina Gaburro;Eva Sincich
2018-01-01
Abstract
We consider the inverse boundary value problem of determining the potential q in the equation Δu+qu=0 in Ω⊂Rn, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension n⩾3 for potentials that are piecewise linear on a given partition of Ω. No sign, nor spectrum condition on q is assumed, hence our treatment encompasses the reduced wave equation Δu+k2c−2u=0 at fixed frequency k.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ASY-171457.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
292.38 kB
Formato
Adobe PDF
|
292.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2926813_ASY-171457-Post_print.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
853.47 kB
Formato
Adobe PDF
|
853.47 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.